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Abstract. Kinetic roughening of the growing surface generates universal finite-size correc- 
tions in the growth rate of films and crystals. For thin films the correction scales with the 
film thickness h as h-".; for thick fllms it scales with the substrate size L as L-"II, where 
a,l = 2(1- 5) and a, = 2(1- [)/z in terms of the kinetic roughening exponents and z. For 
ballistic deposits this implies a similar correction in the density. The coefficient of the 
correction is proportional to the KPZ coupling constant A. For one-dimensional substrates 
all = 1 and a, = #.  These predictions are corroborated by computer siniulations of growth 
and deposition on one- and two-dimensional substrates, and by exact results for one- 
dimensional models. Different exponents apply in the weak results for one-dimensional 
models. Different exponents apply in the weak coupling regime and at kinetic roughening 
transitions. 

Transients in crystal growth rates reflect the evolution of the surface morphology, 
thereby providing insight into the growth mechanism [l]. Similarly in the growth of 
whiskers [2] and lamellar polymer crystals [3-61 it is important to understand the 
dependence of growth rates on the crystal size. In the present letter we study transient 
and size effects related to the kinetic roughening [7] of the growing surface. It has 
only recently been realized [ 81 that surface roughening in growth processes involves 
long wavelength undulations [9] and therefore is a universal phenomenon independent 
of microscopic details. 

Consider for example a film grown from a perfectly flat substrate of linear size L. 
The growth process starts at time t = 0. To leading order in t the film thickness 6 is 
proportional to t. Hence the growth rate G( L, t )  = dh/d t  tends to some limiting value 
Go for t, L + 00. We are going to show that the finite size correction 

AG(L, t )  = G(L,  t )  - Go (1) 

has a power law decay 

where the exponents all and aI depend only on the dimensionality d of the substrate, 
and the coefficient A is related to the inclination dependence of the macroscopic growth 
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rate Go. The dynamic exponent z which determines the crossover time scale t , -  L‘ 
in ( 2 )  describes the lateral spreading of surface fluctuations in the growth process 
[7,8,10] (e.g. z = 2 for diffusive dynamics). For a growing crystal of radius R we have 
L - t - R. Since z > 1, this implies that t << L” and the relevant exponent is a,. 

Throughout the letter periodic boundary conditions are assumed in the d substrate 
directions. More realistic (free) boundary conditions affect only the amplitude of AG, 
but not the values of the exponents all and a,. An explicit one-dimensional example 
is given below. In the presence of edges a growing film develops size-dependent 
corrections to the (flat) macroscopic shape [ 111 which give rise to additional corrections 
in the growth rate. 

Our general results are derived for the continuum model of Kardar, Parisi and 
Zhang (KPZ) [8]. On a mesoscopic scale the local film thickness above a substrate 
point x = (x,, . . . , x d ) ,  at time t, is described by a function h ( x ,  t )  which evolves 
stochastically according to 

Here gb is the ‘bare’ growth rate in the absence of fluctuations. The nonlinear term 
reflects the inclination dependence [7,8,12, 131 of the local growth rate. The last two 
terms on the right-hand side represent the fluctuations in the growth process. The 
random flux q ( x ,  t )  is taken to have zero mean and short range correlations in space 
and time. The full growth rate of the infinite film is obtained by averaging (3)  over 
the noise 7. Since the average surface profile is flat, (V’h) = 0. Thus 

A 
Go=(ah/at) ,=gb+-((Vh)2),  2 (4) 

which shows how the bare growth rate is renormalized by fluctuations in the local 
surface inclination. The significance of the coefficient A can be seen by imposing an 
infinitesimal tilt, h(x ,  t )  + h(x ,  t )  + U * x, lul<< 1. Noting that ( V h )  = 0, we find that the 
change induced in Go is ;Au’ and hence [7,12,13] 

In a finite system the statistical average on the right-hand side of (4) is modified: the 
long wavelength fluctuations are cut off and ((Vh)’) is reduced. We conclude that the 
size correction to the growth rate is given by 

Since the quantity in round brackets is positive, the sign of the correction is determined 
by the sign of A. The constrained average is conveniently evaluated in Fourier space, 

where the sum is over all non-zero modes in the hypercube Ld, and $(e, t )  denotes 
the Fourier transform of h ( x ,  t ) .  For small q = 1q/ and large t the average Fourier 
amplitudes attain the scaling form [7,8,  101 
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Here the wandering exponent [ 141 5 describes the scaling of the amplitude of transverse 
excursions tL of the surface on a lateral length scale 511, t1 - si. The scaling function 
f approaches a constant for t >> q-' and vanishes for t<< 4'. Inserting (8) into (7)  it 
follows that the leading corrections to the sum are determined by the large-scale spatial 
cut-off L if t >> Lz and by the temporal cut-off t'" if t<< L', as expressed in (2), and 
the exponents are identified as 

all = 2(1- 5) L y I  = 2( 1 - { ) / z .  (9) 
The kinetic roughening exponents 5 and z are known exactly only for one- 

dimensional substrates, where [8] { = $, z = $ and hence 

LyII = 1 Ly,  3 ( d  = 1) .  (10) 
For two-dimensional substrates accurate numerical estimates [ 151 indicate that 5 = 
0.38 f 0.01, z = 1.62 f 0.02, leading to 

1.25 0.02 cyI = 0.77 f 0.02 ( d  = 2). (11) 

l / a ,  - l / q  =; (12) 

Moreover the exact scaling relation [ 8,161 { + z = 2 implies 

for all d. 
In order to test these predictions we have carried out large-scale simulations of a 

variety of growth models on one- and two-dimensional substrates. In figure 1 we show 
results for the stationary ( t  + 00) growth rate in two dimensions. To extract the exponent 
a11 we use tthe fact that G(2L) - G(L) scales as L-"'l asymptotically. For small L there 
are systematic deviations from the power law due to higher-order terms in 1/ L, while 
for large L statistical uncertainties dominate. Similar restrictions of the scaling region 
arise in the transient case L+m (see figure 2). The systematic error can be assessed 
by estimating the exponents also from the inverse growth rate G-'. The exponents 
presented in table 1 were obtained from the data in the scaling region, and the error 
estimates contain a combination of systematic and statistical uncertainties. The agree- 
ment with the predictions (10) and (1  1)  is satisfying in all cases. 

\ slope -1.25 
K K 

0 

-10 
2 6 

i ( L )  
Figure 1. Size-dependent growth rate G ( L )  for three models of growth on two-dimensional 
substrates: ballistic deposition with nearest-( NN) and next-nearest-( NNN) neighbour stick- 
ing [17, 181, and a restricted solid-on-solid (RSOS) model [19]. The power law IG(2.L)- 
G(L)I - L-'.*' is included to guide the eye. 
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Figure 2. Deposit density p as a function of film thickness h for ballistic deposition with 
nearest-neighbour sticking on a substrate of 2048 x 2048 lattice sites. The asymptotic density 
p(co)=0.3000 was estimated by extrapolating the finite-size data shown in figure 1. The 
deposit density is inversely proportional to the growth rate. 

Table 1. Numerical results for the finite-size correction exponents ail and a,. The models 
which were simulated are ballistic deposition with nearest-(”) and next-nearest-(”N) 
neighbour sticking [17, 181, a restricted solid-on-solid model [19], and the single step model 
[18]. The maximum substrate size for the determination of cyii was L =  1024 (ballistic NN,  
d = l ) ,  L = 512 (ballistic N N ,  d = 2), L= 256 (ballistic N N N ,  d = 1, and restricted S O S ,  

d = 2), and L = 128 (ballistic N N N ,  d = 2 and restricted S O S ,  d = 1). The result (*) for the 
one-dimensional single step model is exact. The exponent a ,  was obtained from several 
simulations on lattices of size L = 2 ”  for d = 1, and L=2048 (ballistic deposition) and 
L = 1024 (restricted SUS) for d = 2. 

Model ( d  = 1) all a ,  

Ballistic N N  1.04*0.05 0.70 * 0.02 
Ballistic N N N  1.01 50.03 0.68 5 0.03 
Restricted SOS 0.98 * 0.05 0.68 5 0.01 
Single step 1* 0.71 50.02 

Model ( d  = 2) a ,  

Ballistic N N  1.28 * 0.04 0.78 5 0.04 
Ballistic N N N  1.28 * 0.08 0.83 5 0.03 
Restricted SOS 1.32i0.09 0.81 

The exponent all was previously determined in simulations of spatially correlated 
ballistic deposition on one- and two-dimensional substrates [20]. In that case the 
roughening exponents 5 and z show a non-trivial dependence on the power law decay 
of the noise correlations [8]. The measured values [20] of all and 5 are consistent with 
the scaling relation (9) both in one and two dimensions. 

In the following we apply our results to some specialized situations. 
(i)  Ballistic deposition. For ballistic deposition processes the growth rate G is 

inversely proportional to the deposit density p, p = J /  G where J is the deposition flux 
[12]. The finite size correction to the deposit density is then A p  = -(J/Gi)AG. Since 
A > 0 for ballistic deposition [12], Ap > 0. Numerical results for ballistic deposition 
onto a two-dimensional substrate are shown in figure 2. Such power law density 
corrections were observed in several early studies of ballistic aggregation [21] and 
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deposition [17]. The results are in rough agreement with our predictions, but at the 
time it was concluded that the corrections are non-universal. In view of the simulation 
results presented in table 1 it is clear that this apparent non-universality is due to 
additional corrections to scaling, which are known [22] to be strongly model dependent. 

(ii) d = 1. In the one-dimensional case exact results are available for the size 
dependence of the stationary (f+a) growth rate. These solutions rely on the fact 
[S, 231 that the surface gradient has short correlations in d = 1. This implies that the 
terms in the sum (7) are independent of q, q2(lfi(q)1’>=X, where x denotes the 
compressibility of the ‘gas’ of surface steps [7,24]. Since the sum in (7) extends over 
L- 1 of a total of L modes, we have 

AG(L) = -- Ax ( d = l ) .  (13) 2L 

This expression is easily verified for the single step model [18], which has nearest- 
neighbour height differences uj = h (  j )  - h( j - 1) = * l ,  j = 1, . . . , L with periodic 
boundary conditions. In the steady state the q at different sites are independent. The 
growth rate is equal to the probability to find a growth site (a local surface minimum), 
i.e. a pair of sites with crj = -1 ,  uj+l = 1. For a surface of inclination U = N / L  there 
are ( L S  N ) / 2  sites with aj = 1 and ( L -  N ) / 2  sites with uj = -1. Hence the growth 
rate is 

1 ( L - N ) ( L + N )  1 
4 

= - ( 1  - u2)(1 - l /L)-l .  G(L) =- 
4 L(L-1)  

For L + w ,  G,(u) =a(l -U’) and A = -f according to ( 5 ) .  The compressibility is 
x ( u )  = 1 - U’, so (13) gives AG = ( 1  - u2)/4L in agreement with (14). 

A similar calculation can be done for the one-dimensional polynuclear growth 
model [3-5,9] with nucleation rate r and step velocity c. In that case the macroscopic 
parameters entering (13) are [24] A = and ,y = m, and thus AG( L) = -c/2L 
in agreement with the exact expression [5,6] for G(L). It is interesting to note that 
Frank’s [4] approximate solution yields a leading correction term -1/L2 and hence 
appears to neglect [ 6 ]  the effect of kinetic roughening. 

We have also investigated the effect of free boundary conditions for the one- 
dimensional single step model [25]. Particles are added to the boundary sites j = 1 (L) 
at unit rate whenever u2 = 1 (uL = -1).  This dynamics leads to a horizontal surface, 
irrespective of the substrate inclination. The stationary height profile is concave ( h ” >  0) 
and the growth rate is given by G(L) =$(1-3/2L)-’. As expected, the boundary 
conditions merely change the amplitude of A G. 

(iii) Weak coupling. In substrate dimensions d 2 3 the KPZ equation (3) shows a 
phase transition at a critical value A, of the nonlinearity coefficient [15,26]. In the 
weak coupling phase IAI < A ,  the nonlinearity is irrelevant and the scaling form (8) 
holds with the exponents obtained from the linearized version of (3), I =  (2 - d ) / 2  
and z = 2. Hence the size correction exponents are 

d cyL = d / 2  (weak coupling). (15) 
The result all = d is typical for equilibrium systems, where finite-size corrections to 
canonical expectations values are of the order (volume)-’. In the limit d +a (15 )  
indicates that the power law corrections (2) become exponential in the weak coupling 
phase. This is consistent with rigorous results obtained by Derrida and Spohn [27] on 
the Cayley tree, which is thought to represent the high-dimensionality limit. They 
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computed the temporal finite size corrections, finding an exponential decay in the weak 
coupling phase and a 1/ t decay in the strong coupling phase. Thus the d + 00 limit of 
the strong coupling aL appears to be al = 1, which implies that l+ 0 and z + 2 in high 
dimensions. Similar l / t  corrections to the growth rate arise generically [28] in mean 
field approximations [7,29] to growth processes. 

(iv) A =O. Recently a class of growth models was introduced [6, 7, 13, 30, 311 for 
which the coefficient A (equation ( 5 ) )  changes sign as a temperature-like parameter K 

is varied. According to our result (2), monitoring the finite-size corrections for different 
K should provide a simple and efficient way of determining the transition point K ,  

where A ( K, )  = 0. We illustrate this by simulations of a solid-on-solid model due to 
Amar and Family [30]. In figure 3 we plot the amplitude of the spatial finite-size 
correction as a function of K for one- and two-dimensional substrates. We estimate 
the critical parameter value to be K,( d = 1) L- 0.951 aand ~ , ( d  = 2) = 0.557. A change 
in the sign of AG(L) was also observed by Gates and Westcott [6] in an exactly solved 
one-dimensional model [7,31]. 

A 1  I 

0 0 . 5  1 . 0  1 . 5  2 . 0  

K 

Figure 3. Amplitude of the spatial finite-size correction for the Amar-Family model [30]. 
The amplitude A was determined by fitting the growth rate to the form G = G,(1- A/L"li) 
for L = 16 - 1024 ( d  = 1) and L = 16 - 512 ( d  = 2). For the correction exponent the values 
cyll = 1 (d = 1) and cylI = 1.25 ( d  = 2 )  were used. 

At K = K ,  the finite-size corrections are determined by higher-order terms in the 
macroscopic inclination dependent growth rate Go( U). Since such nonlinearities are 
irrelevant for the large-scale behaviour of surface fluctuations, statistical averages can 
be evaluated with the Gaussian correlations of the linearized KPZ equation. This implies 
that q2(lh,12) = L-di  for small q, with some constant ,f, and higher moments of (Vh)' 
factorize as ([(Vh)']") = B,((Vh)')" with B, = n;l ' , (2k+ 1). To model a situation where 
Go(u) = Go(0)+A41u/4 for small U, we add a term A4[(Vh)'lz to the right-hand side of 
the KPZ equation (3). The full growth rate Go(u) is computed using the factorization 
property, and it is found that the term proportional to u2 vanishes if the parameter in 
the KPZ equation are adjusted to A = -12,fA4. The finite-size correction to ( [ (Vh)'] ' )  
is then evaluated with this choice of parameters, which ensures that the physical growth 
rate has A = 0. This gives a correction AG- L-Zd. In general, if the lowest-order 
nonlinearity in Go(u) is A 2 , l ~ I Z n ,  the spatial finite-size correction is proportional to 
(-l)nA2nL-nd, so all = nd and cyl = a , , / z  = nd/2. 
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(v) Faceting transitions are associated with a non-analytic variation of the growth 
rate with surface inclination [32], Go( U )  - G,(O) - /U[' with 8 < 2, corresponding for- 
mally to A = 00. Such cases are covered by the following simple scaling argument, 
which also reproduces the previous results for the exponents. Transverse excursions 
on a lateral length scale tIl are of the order 5, - t i .  Hence the inclination fluctuations 
scale as tL/&ll-,$('-c), and the corresponding contribution to the growth rate is of 
the order In a finite system there are contributions up to fI1 - L or tl1 - t'" 
depending on which length scale is smaller. Thus we conclude thaat 

all = - 5 )  a, = e ( i  - t ) / z .  (16) 
At the critical point of percolation-driven faceting [32] 8 is the directed percolation 
anisotropy exponent, and it can be shown [33] that b = 0, z = 8. Equation (16) then 
reduces to all = 8, a, = 1 in agreement with previous results for the growth rate [33]. 

(vi) Dete.rministic growth. In the absence of noise (v, r] + 0) the KPZ equation (3) 
describes the smoothing of a rough substrate, which is modelled by an ensemble of 
random initial conditions [34,35]. Asymptotically the growth rate approaches its bare 
value g,. The exponent a, of the transient power law correction is still given by (9); 
however now 5 denotes the effective [7] substrate wandering exponent and z is 
determined through z = 2 - 4' [34]. There are no spatial finite-size corrections, since 
the surface is completely flat for t >> L'. For the deterministic KPZ equation with 
generalized nonlinearity [34] equation (16) holds, as can be checked for an exactly 
solved case [34]. 

One of us (JK) wishes to thank Herbert Spohn for helpful discussions, and the Deutsche 
Forschungsgemeinschaft for support. 
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